The geometric mean decomposition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geometric mean decomposition

Given a complex matrix H, we consider the decomposition H=QRP∗ where Q and P have orthonormal columns, and R is a real upper triangular matrix with diagonal elements equal to the geometric mean of the positive singular values of H. This decomposition, which we call the geometric mean decomposition, has application to signal processing and to the design of telecommunication networks. The unitary...

متن کامل

The geometric mean algorithm

Bisection (of a real interval) is a well known algorithm to compute eigenvalues of symmetric matrices. Given an initial interval [a, b], convergence to an eigenvalue which has size much smaller than a or b may be made considerably faster if one replaces the usual arithmetic mean (of the end points of the current interval) with the geometric mean. Exploring this idea, we have implemented geometr...

متن کامل

The matrix geometric mean

An attractive candidate for the geometric mean of m positive definite matrices A1, . . . , Am is their Riemannian barycentre G. One of its important properties, monotonicity in the m arguments, has been established recently by J. Lawson and Y. Lim. We give a much simpler proof of this result, and prove some other inequalities. One of these says that, for every unitarily invariant norm, |||G||| ...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Generalizing the Arithmetic Geometric Mean

The paper discusses the asymptotic behavior of generalizations of the Gauss’s arithmetic-geometric mean, associated with the names Meissel (1875) and Borchardt (1876). The "hapless computer experiment" in the title refers to the fact that the author at an earlier stage thought that one had genuine asymptotic formulae but it is now shown that in general "fluctuations" are present. However, no ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2004.09.018